Three phase circuits
Modern power system transmits three phase-shiffed sinusoidal currents through three parallel wires across long distances. Frow these three-phase (denoted 3ϕ) circuits, often a single phase supplies your home. However, in this course, we will only heal with 3ϕ generators supplying power to 3ϕ loads only.
Why 3ϕ ? Why not $1 \phi, 2 \phi, 4 \phi$, etc.? Three phase power generation has advantages that we will cover later in the course.

To explain 3ϕ circuits, consider 3 sinusoidal voltage sources that are phase-shifted by 120 degrees as follows.

$$
\begin{aligned}
& v_{a a^{\prime}}(t)=v_{0} \cos \left(\omega t+\theta_{v}\right) \\
& \bar{V}_{a a^{\prime}}=\frac{v_{0}}{\sqrt{2}} \angle \theta_{v}
\end{aligned}
$$

$$
\begin{aligned}
v_{b b^{\prime}}(t) & =v_{0} \cos \left(\omega t+\theta_{v}-120^{\circ}\right) \\
\bar{V}_{b b^{\prime}} & =\frac{v_{0}}{\sqrt{2}} \&\left(\theta_{v}-120^{\circ}\right)
\end{aligned}
$$

Phasor diagram:

$$
\begin{aligned}
& v_{c c^{\prime}}(t)=v_{0} \cos \left(\omega t+\theta_{v}+120^{\circ}\right) . \\
& \bar{V}_{c c^{\prime}}=\frac{v_{0}}{\sqrt{2}} \not \subset\left(\theta_{v}+120^{\circ}\right) \\
& \bar{V}_{c c^{\prime}} \bar{V}_{b b}^{\prime} \\
& \underset{T \theta_{v}}{ } \bar{V}_{a a^{\prime}}
\end{aligned}
$$

Such a sequence is called a positive (tue)

Suck a sequence is called a negative (-ve) sequence.

Claim: $\bar{V}_{a a^{\prime}}+\bar{V}_{b b}^{\prime}+\bar{V}_{c_{c}^{\prime}}=0$.
Verify it with dementary complex arithmetic.
Let us interconne of $a^{\prime}, b^{\prime}, c^{\prime}$ terminals.

Terminal " n " is called neutral. This interconnection is a "wye" connected source.

Let us interconnect this "wye" connected source to a "wye" connected lond as follows

- Claim 1: $\bar{I}_{n}=0$, and $\bar{V}_{n_{s}}-\bar{V}_{n_{L}}=0$.

Proof:

$$
\begin{aligned}
& \bar{V}_{a n}-\bar{I}_{a} \bar{Z}+\bar{I}_{n} \bar{Z}_{n}=0 . \\
& \bar{V}_{b n}-\bar{I}_{b} \bar{Z}+\bar{I}_{n} \bar{Z}_{n}=0 . \\
& \bar{V}_{c n}-\bar{I}_{c} \bar{Z}+\bar{I}_{n} \bar{Z}_{n}=0
\end{aligned}
$$

Add them $0-\left(\bar{I}_{a}+\bar{I}_{b}+\bar{I}_{c}\right) \bar{Z}+3 \bar{I}_{n} \bar{Z}_{n}=0$.

$$
\Rightarrow \bar{I}_{n}\left(3 \bar{z}_{n}+\bar{z}\right)=0 \Rightarrow \bar{I}_{n}=0 \text { (why?). }
$$

In this course, we will only consider "balanced" loads, ice., each branch or phase of the lond is identical. For balanced 3ϕ sources ${ }_{q}^{\prime}$ loads, $\bar{I}_{n}=0$
\Rightarrow we can ignore the line interconnecting the neutral terminals.

Definition: The magnitude of voltage differences across the branches or phases of a 3ϕ-component is called phase voltage.

$$
V_{\phi}=\left|\bar{V}_{a n}\right|=\left|\bar{V}_{b n}\right|=\left|\bar{V}_{c n}\right| .
$$

Definition: Magnitude of voltage differences between the terminal of a 3ϕ-component is called line-to-line or line voltage.

$$
V_{L}=\left|\bar{V}_{a b}\right|=\left|\bar{V}_{b c}\right|=\left|\bar{v}_{c n}\right|
$$

- Claim: $V_{L}=\sqrt{3} V_{\phi}$.

Proof:

$$
\begin{aligned}
V_{L} & =\left|\bar{V}_{a b}\right| \\
& =\left|\bar{V}_{a n}-\bar{V}_{b n}\right| \\
& =\left\lvert\, \frac{v_{0}}{\sqrt{2}}\left\langle\theta_{v}-\frac{v_{0}}{\sqrt{2}}\left\langle\left(\theta_{v}-120^{\circ}\right)\right|\right.\right. \\
& =\left\lvert\, \frac{v_{0}}{\sqrt{2}}\left\langle\theta_{v}\left(1-e^{j \omega\left(-120^{\circ}\right)}\right)\right|\right. \\
& =\frac{v_{0}}{\sqrt{2}} \cdot\left|1-\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)\right| \\
& =V_{\phi}\left|\frac{3}{2}+j \frac{\sqrt{3}}{2}\right|=\sqrt{3} \cdot V_{\phi} .
\end{aligned}
$$

Phasor diagram showing phase and line voltage phasors.

Definition: Current magnitude on each branch of $a \quad 3 \phi$ component is called phase current. Aud, current magnitude flowing at the terminal is called line current.

For the wye-connected source, phase current $\left(I_{\phi}\right)$ equals line current $\left(I_{L}\right)$, given by $\left|\bar{I}_{a}\right|$, ie..

$$
I_{\phi}=I_{L}=\left|\bar{I}_{a}\right|=\left|\bar{I}_{b}\right|=\left|\bar{I}_{c}\right|
$$

- Claim: The 3ϕ complex power is given by $S_{3 \phi}=\sqrt{3} V_{L} I_{L} \not \hbar \theta$, where θ is the angle between $\bar{V}_{a_{n}}$ \& \bar{I}_{a}.
Proof:

$$
S_{3 \phi}=\bar{V}_{a n} \bar{I}_{a}^{*}+\bar{V}_{b a} \bar{I}_{b}^{*}+\bar{V}_{c a} \bar{I}_{c}^{*}
$$

Recall that phases b and c are phase shifted from a by -120° and $+120^{\circ}$, respectively.

$$
\begin{aligned}
\Rightarrow S_{3 \phi}= & \bar{V}_{a n} \bar{I}_{a}^{*}+\left(\bar{V}_{b n} \alpha-120^{\circ}\right)\left(\bar{I}_{a} \alpha-120^{\circ}\right)^{*} \\
& +\left(\bar{V}_{a n} \not \subset+120^{\circ}\right)\left(\bar{I}_{a} \alpha+120^{\circ}\right)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =3 \bar{V}_{a n} \bar{I}_{a}^{*} \\
& =3\left(\left|\bar{V}_{a n}\right| \not \subset \bar{V}_{a n}\right) \cdot\left(\left|\bar{I}_{a}\right| \cdot \measuredangle\left(-\bar{I}_{a}\right)\right) . \\
& =3 \cdot\left|\bar{V}_{a n}\right| \cdot\left|\bar{I}_{a}\right| \cdot \measuredangle\left(\bar{V}_{a n}-\bar{I}_{a}\right) . \\
& =3 V_{\phi} I_{L} \not \subset \theta \\
& =\sqrt{3} \cdot V_{L} I_{L} \not \subset \theta
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\therefore P_{3 \phi} & =\sqrt{3} V_{L} I_{L} \cos \theta, \\
Q_{3 \phi} & =\sqrt{3} V_{L} I_{L} \sin \theta \cdot \\
s_{3 \phi} \rightarrow=
\end{array}\right\} \begin{aligned}
& 3 \phi \text { real and } \\
& \text { reactive powers } \\
& \text { generated. }
\end{aligned}
$$

Wye-connected (Y-connected) source ${ }_{l}^{d}$ delta-connected (1 -connected) load.

For the Δ-connected load,
phase voltage $V_{\phi}=\left|\bar{V}_{a b}\right|=\left|\bar{V}_{b c}\right|=\left|\bar{V}_{c a}\right|$.
phase current $I_{\phi}=\left|\bar{I}_{1}\right|=\left|\bar{I}_{2}\right|=\left|\bar{I}_{3}\right|$.
line voltage $V_{L}=\left|\bar{V}_{a b}\right|=\left|\bar{V}_{b c}\right|=\left|\bar{V}_{c a}\right|$
line current $I_{L}=\left|\bar{I}_{a}\right|=\left|\bar{I}_{b}\right|=\left|\bar{I}_{c}\right|$.

$$
\left.\begin{array}{l}
\bar{I}_{a}=\bar{I}_{1}-\bar{I}_{3}, \\
\bar{I}_{b}=\bar{I}_{2}-\bar{I}_{1}, \\
\bar{I}_{c}=\bar{I}_{3}-\bar{I}_{2} .
\end{array}\right\} \begin{aligned}
& \text { From } \\
& \text { current }
\end{aligned}
$$

By symmetry, $\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}$ are phases with equal magnitudes, but phase-shifted by $120^{\circ} \%$.

$$
\begin{array}{l|l}
\bar{I}_{2} & \bar{I}_{1} \\
\hline \bar{I}_{3} & I_{I_{a}}
\end{array}
$$

$$
\begin{aligned}
& \left|\bar{I}_{1}\right|=\left|\bar{I}_{2}\right|=\left|\bar{I}_{3}\right|, \\
& \text { and }\left|\bar{I}_{a}\right|=\sqrt{3}\left|\bar{I}_{1}\right| . \\
& \Rightarrow I_{L}=\sqrt{3} I_{\phi} . \\
& \text { Also, } V_{L}=V_{\phi} .
\end{aligned}
$$

Cain: The 3ϕ complex power delivered To the Δ-connected load is given by $S_{3 \phi}=\sqrt{3} V_{L} I_{L} \cos \theta$, where θ is the angle between line voltages \& currents, or phase voltages \& currents.

$$
\bar{V}_{a b}=\bar{Z} \bar{I}_{1}, \bar{V}_{b c}=\bar{Z} \bar{I}_{2}, \bar{V}_{c a}=\bar{Z} \bar{I}_{3},
$$

where $\bar{z}=|\bar{z}| . \angle \theta$.
Recall that

$$
\begin{aligned}
S_{3 \phi} & =3 \cdot\left|\bar{V}_{a n}\right| \cdot\left|\bar{I}_{a}\right| \cdot \measuredangle\left(\bar{V}_{a n}-\bar{I}_{a}\right) . \\
& =\sqrt{3} \cdot\left|\bar{V}_{a b}\right| \cdot\left|\bar{I}_{a}\right| \cdot \not \theta \theta \\
& =\sqrt{3} V_{L} \cdot I_{L} \cdot \nless \theta,
\end{aligned}
$$

the same as a Y-connected source with ar Δ-connected lond.

Summary of relationships:	
Y-component	Δ-component
$V_{L}=\sqrt{3} V_{\phi}$	$V_{L}=V_{\phi}$,
$I_{L}=I_{\phi}$	$I_{L}=\sqrt{3} I_{\phi}$,
$S_{3 \phi}=\sqrt{3} V_{L} I_{L} \not \alpha_{\theta}$	$S_{3 \phi}=\sqrt{3} V_{L} I_{L} \& \theta$

